Greek number systems

There were no single Greek national standards in the first millennium BC. since the various island states prided themselves on their independence. This meant that they each had their own currency, weights and measures etc. These in turn led to small differences in the number system between different states since a major function of a number system in ancient times was to handle business transactions. However we will not go into sufficient detail in this article to examine the small differences between the system in separate states but rather we will look at its general
ructure. We should say immediately that the ancient Greeks had different systems for cardinal numbers and ordinal numbers so we must look carefully at what we mean by Greek number systems. Also we shall look briefly at some systems proposed by various Greek mathematicians but not widely adopted.
The first Greek number system we examine is their acrophonic system which was use in the first millennium BC. 'Acrophonic' means that the symbols for the numerals come from the first letter of the number name, so the symbol has come from an abreviation of the word which is used for the number. Here are the symbols for the numbers 5, 10, 100, 1000, 10000.

0 Acrophonic 5, 10, 100, 1000, 10000.
We have omitted the symbol for 'one', a simple '।', which was an obvious notation not coming from the initial letter of a number. For 5, 10, 100, 1000, 10000 there will be only one puzzle for the

Γ	Δ	H	\searrow	M
Pente	Deka	Hekaton	Khilioi	Murioi
Пsvtz	Aska	Haratov	XLhlol	Muplot
5	10	100	1000	10000

by P if it was the first letter of Pente. However this is simply a consequence of changes to the Greek alphabet after the numerals coming from these letters had been fixed. By that time the symbols were probably not thought of as coming from the letters so there was no move to change them with changes to the symbols for the letters. The original form of Π was G and so Pente was originally Gente. Now the system was based on the additive principle in a similar way to Roman numerals. This means that 8 is simply V|।|, the symbol for five followed by three symbols for one. Here is $1-10$ in Greek acrophonic numbers.

1-10 in Greek acrophonic numbers.

If base 10 is used with an additive system without intermediate symbols then many characters are required to express certain
 numbers. The number 9999 would require 36
symbols in such a system and this is very cumbersome. We have already seen that that Greek acrophonic numbers had a special symbol for 5. This is not surprising for it cuts down the characters required and also presumably arises from counting on fingers. We have 10 fingers but there is 5 on each hand. What is slightly more surprising is that the system had intermediate symbols for $50,500,5000$, and 50000 but they were not new characters, rather they were composite symbols made from 5 and the symbols for 10, 100, 1000, 10000 respectively. Here is how the composites were formed.

Combining acrophonic numerals.
ce that since there was no positional aspect of the
system, there was no need for zero as an empty place holder.

Δ	Γ^{Δ}	H	Γ^{μ}	\searrow	$\Gamma^{风}$	M	Γ^{M}
10	50	100	500	1000	5000	10000	50000

Higher numbers and combining acrophonic numerals The symbol H represented 100 as no problem is created in the representation by the number having no tens or units.
Now this is not the only way in which such composite symbols were created. We have already mentioned that different states used variants of the number system and, although we are not going to examine these in detail, let us at least give some indication by showing some forms of 50 that have been found. Most of these forms are period 1500 BC to 1000 BC .

Different forms of 50 in different Greek States.

The next point worth noting is that this

number system did not really consist of abstract numbers in the way we think of numbers today. Today the number 2 is applied to any collection of two objects and 2 is thought of as an abstract property that all such collections of two objects have in common. We know that the ancient Greeks had a somewhat different idea because the

105 There are 24 letters in the classical Greek alphabet and these were used together with 3 older letters which have fallen out of use. These 27 letters are

alpha	A	α	ksi	Ξ	ξ
beta	B	β	omicron	O	0
gamma	Γ	γ	pi	Π	π
delta	Δ	δ	koppa	-	-
epsilon	E	ε	rho	P	ρ
digamma	\bar{Z}	$\bar{\zeta}$	sigma	Σ	σ
zeta	Z	ζ	tau	T	τ
eta	H	η	upsilon	Y	\cup
theta	Θ	Θ	phi	Φ	ϕ
iota	I	L	chi	X	χ
kappa	K	κ	psi	Ψ	ψ
lambda	Λ	λ	omega	Ω	ω
mu	M	μ	san	-	-
nu	N	\vee			

Of these we have given both the upper case and lower case versions of the 24 classical letters. The letters digamma, koppa, and san are the obsolete ones.
110 Although we have not given their symbols in the above table their symbols appear in the numeral tables below. The first nine of these letters were taken as the symbols for $1,2, \ldots, 9$.

alphabetical 1-9.

115 Notice that 6 is represented by the symbol for the obsolete letter digamma.
The next nine letters were taken as the symbols

\#20170220 2 Paul Theelen, Monarchstrat 19, 5641 GH Eindhoven 040-2814621 l.theelen@onsneteindhoven. nl
for $10,20, \ldots, 90$.
alphabetical 10-90.
Notice that 90 is represented by the symbol for the obsolete letter koppa.
The remaining nine letters were
200, ... , 900 .
alphabetical 100-900.
Notice that 900 is represented by
distinguish
Now numbers were formed by the additive principle. For example 11, 12, ... , 19 were written:
alphabetical 11-19.
140 Larger numbers were constructed in the same sort of way. For example here is 269.

alphabetical 269.
Now this number system is

\section*{| $\boldsymbol{E} \boldsymbol{\Xi}$ (-1 |
| :---: |
| 269 |}

compact but without modification
is has the major drawback of not allowing numbers larger than 999 to be expressed. composite symbols were created to overcome this problem. The numbers between 1000 and 9000 were formed by adding a subscript or superscript iota to the symbols for 1 to 9.

175 Although we do not have first hand knowledge of the proposal by Apollonius we do know of it through a report by Pappus. The system we have described above works with products by a myriad. The idea which Apollonius used to extend the system to larger numbers was to work with powers of the myriad. An M with an α above it represented 10000, M with β above it represented M^{2}, namely 100000000 , etc. The number to be multiplied by 10000, 10000000, etc is written after the M symbol and $\chi^{\alpha L}$ is written
between the parts of the number, a word which is best interpreted as 'plus'. As an example here is the way that Apollonius would have written 587571750269.

Apollonius's representation of

 587571750269.Archimedes designed a similar system but rather than use $10000=$

Apollonius' representation of 587571750269 10^{4} as the basic number which was raised to various powers he used $100000000=10^{8}$ raised to powers. The first octet for Archimedes consisted of numbers up to 10^{8} while the second octet was the numbers from 10^{8} up to 10^{16}. Using this system Archimedes calculated that the number of grains of sand which could be fitted into the universe was of the order of the eighth octet, that is of the order of 10^{64}.
Article by: J J O'Connor and E F Robertson

